with XTRA

6-of-6 LOTTO Odds Calculation

According to the rules of probability, the number of combinations of n items taken r at a time are:

$$
\frac{n!}{r!(n-r)!}
$$

where $\mathrm{n}!=\mathrm{n} *(\mathrm{n}-1) *(\mathrm{n}-2) * \ldots * 2 * 1$.
This rule applies to situations where the order of the items chosen is irrelevant, such as the drawing of 6 numbers out of 53 as used in the LOTTO game.

In the LOTTO game, $\mathrm{n}=53$ and $\mathrm{r}=6$. When the formula above is calculated with these values for n and r , the result is $22,957,480$.

$$
\begin{gathered}
\frac{53!}{6!* 47!} \\
=\frac{53 * 52 * 51 * 50 * 49 * 48 * 47!}{6 * 5 * 4 * 3 * 2 * 1 * 47!} \\
=\frac{53 * 52 * 51 * 50 * 49 * 48}{6 * 5 * 4 * 3 * 2} \\
=22,957,480
\end{gathered}
$$

This means that there are 22,957,480 different ways in which 6 numbers can be chosen from a total of 53 numbers. Therefore, the odds of correctly choosing the winning combination is 1 to 22,957,480.

5-, 4- \& 3-of-6 LOTTO Odds Calculation

The formula to determine the probability of selecting Z correct out of R draws from N numbers is as follows:
$\frac{\frac{\mathrm{R}!}{\mathrm{Z}!(\mathrm{R}-\mathrm{Z})!} * \frac{(\mathrm{~N}-\mathrm{R})!}{((\mathrm{N}-\mathrm{R})-(\mathrm{R}-\mathrm{Z}))!(\mathrm{R}-\mathrm{Z})!}}{\frac{\mathrm{N}!}{\mathrm{R}!(\mathrm{N}-\mathrm{R})!}}$
where $\mathrm{R}!=\mathrm{R} *(\mathrm{R}-1) *(\mathrm{R}-2) * \ldots * 2 * 1$.

Using four-out-of-six as an example, the above formula is:

	6! 47!
	$4!* 2!~ 45!* 2!$
	53!
	$6!* 47$!
	$6 * 5 * 4!\quad 47 * 46 * 45!$
	$4!* 2 * 1$
	22,957,480
	$6 * 547 * 46$
	2
	22,957,480
=	15 * 1,081
	22,957,480
=	16,215
	22,957,480
-	1
	1.415.82

$$
6!* 47!
$$

$$
\frac{\frac{6 * 5 * 4!}{4!* 2 * 1} * \frac{47 * 46 * 45!}{45!* 2 * 1}}{22,957,480}
$$

$$
\frac{\frac{6 * 5}{2} * \frac{47 * 46}{2}}{22,957,480}
$$

$$
=\quad \frac{15 * 1,081}{22,957,480}
$$

$$
=\quad \frac{16,215}{22,957,480}
$$

$$
=\quad \frac{1}{1.415 .82}
$$

